نظریه اتمی
نظریه اتمی
نظریهٔ اتم، سنگ بنای شیمی جدید است. درک ساختار اتمی و بر‌هم‌کنش اتم‌ها، محور درک شیمی است. بیان نخستین نظریه‌ی اتمی را معمولاً به یونانیان باستان نسبت می‌دهند، اما ریشهٔ این مفهوم حتی ممکن است در تمدن‌های کهن تر باشد. بر اساس نظریه‌ی اتمی لیوکیپوس و دموکریتوس، تقسیم مستمر ماده، درنهایت، اتم‌ها را به دست می‌دهد که قابلیت تجزیه شدن آن‌ها ممکن نبود.






نظریه‌های اولیه

تاریخچهٔ تئوری اتمی به یونانی‌های قرن ششم و به ویژه مکتب اتم‌گرایی دموکریت برمی گردد. در حقیقت می‌توان از این بخش با عنوان نظیریه‌های اتمی اولیه یاد کرد. در اوایل قرن ۱۹ جان دالتون توانست خرد شدن متناسب یک ماده را به خوبی توضیح بدهد. دالتون تئوری خود را در ۳ بند جامع به شرح زیر بیان کرد:

عناصر از ذرات بسیار ریزی به نام اتم تشکیل شده‌اند. تمام اتم‌های یک عنصر یکسانند و اتم‌های عناصر مختلف، متفاوت.
تفکیک و اتحاد اتم‌ها، طی واکنش‌های شیمیایی رخ می‌دهد. در این واکنش‌ها، هیچ اتمی به وجود نمی‌آید یا از بین نمی‌رود و هیچ یک از اتم‌های یک عنصر به اتمی از عنصر دیگر تبدیل نمی‌شوند.
یک ترکیب شیمیایی، نتیجهٔ ترکیب اتم‌های دو با چند عنصر است. نوع اتم‌های موجود در یک ترکیب و نسبت آن‌ها همیشه ثابت است.


نظریهٔ دالتون، در مفهوم کلی خود، هنوز هم معتبر است، اما نخستین اصل او باید اصلاح شود. دالتون بر این باور بود که تمام اتم‌های یک عنصر دارای جرم اتمی یکسانی هستند. امروزه می‌دانیم که بسیاری از عناصر دارای ایزوتوپهایی با جرم‌های اتمی متفاوت هستند. ولی می‌توان گفت که تمام اتم‌های یک عنصر به لحاظ شیمیایی یکسانند و اتم‌های یک عنصر با اتم‌های عناصر دیگر تفاوت دارند. به علاوه، برای اتم‌های هر عنصر می‌توان جرم اتمی میانگین به کار برد.

دالتون جنبه‌های کمی نظریهٔ خود را از دو قانون مربوط به تغییر شیمیایی استخراج کرد:

قانون بقای جرم که می‌گوید طی یک واکنش شیمیایی تغییر قابل سنجشی در جرم صورت نمی‌گیرد.
قانون نسبت‌های معین که می‌گوید یک ترکیب خالص همیشه شامل عناصر یکسانبا نسبت جرمی یکسان است.


بر اساس این نظریه، دالتون توانست قانون سوم ترکیب شیمیایی یعنی قانون نسبت‌های چندگانه را بیان کند. بر مبنای این قانون، هنگامی که دو عنصر A و B بیش از یک جسم تشکیل دهند، نسبت مقادیری از A که در این اجسام با مقدار ثابتی B ترکیب شده‌است، اعداد صحیح و کوچکی خواهد بود.






مدل اتمی تامسون

بعد از آن نظریه‌هایی توسط جوزف جان تامسون طی آزمایش‌هایی بر روی پرتو کاتدی که به نظریه کیک کشمشی یا هندوانه‌ای مشهور است، منتشر شد. بر طبق مدل تامسون:

الکترون‌ها در محیطی ابرگونه از جنس بار مثبت پراکنده شده‌اند.
جرم فضای ابرگونه تقریباً صفر است.
سنگینی اتم ناشی از وجود تعداد زیاد الکترون در آن است (بیشتر جرم اتم مربوط به جرم الکترون است).


آزمایش مشهور صفحه طلای رادرفورد به وضوح سه بند مذکور را رد کرد و سبب شکل‌گیری مدل جدیدی برای توصیف اتم، به نام اتم هسته‌دار شد.

سپس ارنست رادرفورد نظریه اتم هسته دار را مطرح کرد. پس از آن نیلز بور نظریه اتمی ای را که در مورد موارد تک الکترونی صحبت می‌کرد را بیان کرد. این نظریه با وجود برتری نسبی در مقایسه با نظریه‌های پیش از حود، به دلیل تناقض با اصل عدم قطعیت هایزنبرگ و محدودیت در توصیف سیستم‌های چند الکترونی کنار گذاشته شد. سپس توسط شرودینگر نظریه کوانتومی بر مبنای مکانیک کوانتومی و با توجه به تابع سای در معادله شرودینگر مطرح شد که بر موجی رفتار کردن الکترون پایه شده بود. ایدهٔ این نظریه (نگاه موجی به ماده) برخلاف نظریه‌ی موجود در زمینه‌ی اثر فوتوالکتریک بود که به نور نگاه ماده‌گرایانه داشت.






معادله شرودینگر

اصل عدم قطعیت هایزنبرگ نشان می‌دهد که هرگونه کوششی برای گسترش الگوی بور، بی‌نتیجه است. پیش‌بینی دقیق مسیر یک الکترون در اتم غیر ممکن است. اروین شرودینگر، به به کار بردن رابطه دوبروی، معادله‌ای برای توصیف الکترون بر مبنای خصلت موجی آن بیان کرد.

معادله‌ی شرودینگر، اساس مکانیک موجی است.این معادله، به صورت یک تابع موجی، سای، برای یک الکترون نوشته می‌شود. با حل این معادله برای الکترون اتم هیدروژن، تعدادی تابع موجی به‌دست می‌آید. هریک از این توابع موجی، به تراز انرژی مشخصی برای الکترون مربوط است و بیان‌گر ناحیه‌ای است که الکترون را در آن می‌توان یافت. تابع موجی یک الکترون بیان‌گر چیزی به نام اوربیتال است.






چکیده مطالب

نظریه‌ی اتمی جدید، ریشه در کارهای جان دالتون دارد که نظریه‌ی خود را بر قانون بقای جرم و قانون نسبت‌های معین، استوار کرد. دالتون، قانون سوم ترکیب شیمیایی، یعنی قانون نسبت‌های چندگانه را پیشنهاد کرد.

یک اتم که کوچک ترین ذره‌ی یک عنصر برای ترکیب با اتم‌های سایر عناصر و تشکیل ترکیبات شیمیایی است، خود از ذرات ربز تری به نام ذرات بنیادی تشکیل شده است. ذرات بنیادی، یعنی الکترون، پروتون و نوترون، با استفاده از چند آزمایش کلاسیک شناسایی شدند و موقعیت آن‌ها در اتم مشخص گردید.

الکترون، بار منفی، e-، دارد، پروتون دارای بار مثبت برابر با بار الکترون اما با علامت مخالف e+ است. نوترون، بار ندارد. جرم الکترون، بسیار کوچک‌تر از جرم پروتون یا نوترون است.

پروتون‌ها و نوترون‌ها در هسته قرار دارند که مرکز اتم به‌شمار می‌رود. اندازه‌ی هسته، در مقایسه با اندازه‌ی کلی اتم بسیار کوچک است، اما بخش اعظم جرم اتم را تشکیل می‌دهد و (به دلیل پروتون‌هاو نوترون هایش) بار مثبت دارد. الکترون‌ها که بخش اعظم حجم اتم را اشغال کرده‌اند، در پیرامون هسته قرار دارند. شمار الکترون‌ها و پروتون‌های هسته در یک اتم خنثی برابر است، در نتیجه کل بار منفی برابر با کل بار مثبت است. تعداد الکترون‌های یون‌های یک اتمی (اتم‌های باردار) بیشتر از تعداد پروتون‌ها (یون‌های منفی)، یا کمتر از تعداد پروتون‌ها (یون‌های مثبت) است.

تعداد پروتون‌های موجود در هسته‌ی یک تم با عدد اتمی مشخص می‌شود. تمام اتم‌های یک عنصر، عدد اتمی یکسان دارند. موقعیت عناصر در جدول تناوبی، با عدد اتمی‌شان مشخص می‌شود.







جمع بندی

تمام مدل‌های اتمی رد شده که امروزه بخش عمده‌ی اعتبار خود را از دست داده‌اند، در رسیدن به آنچه باور امروز بشر از ساختار اتم را شکل می‌دهد نقش بسزایی داشته‌اند.

اگر انسان می‌خواست صبر کند تا کاری را آن قدر خوب انجام دهد که هیچ‌کس نتواند ایرادی بر آن بگیرد، هرگز کاری انجام نمی‌داد.

همان‌گونه که مرتضی خلخالی در نوشته‌ی بالا به درستی بیان کرد، حتی قدیمی ترین نظریات موجود در این زمینه نیز سبب به‌وجود آمدن تفکرات بعد شدند.





واکنش شیمیایی
واکنش شیمیایی (به انگلیسی: Chemical reaction) فرایندی است که در آن ساختار ذره‌های تشکیل دهندهٔ مواد اولیه دچار تغییر می‌شود؛ یعنی طی آن یک یا چند ماده شیمیایی به یک یا چند ماده شیمیایی دیگر تبدیل می‌شود.






انواع تغییرات مواد

تغییراتی که در واکنشی بر روی مواد واکنش‌دهنده صورت می‌گیرد، بطور کلی به دو نوع تغییرات فیزیکی و شیمیایی تقسیم می‌شوند.






تغییرات فیزیکی

در تغییرات فیزیکی فقط حالت فیزیکی ماده تغییر می‌یابد نه ساختار ذره‌های تشکیل دهنده ماده. بنابراین تغییرات همهٔ حالات ماده مانند ذوب، انجماد، تبخیر، میعان، تصعید و چگالش و همچنین انحلال نمکها و بازها در آب، تغییر فیزیکی هستند.






تغییرات شیمیایی

در تغییرات شیمیایی اتصال اتمها به یکدیگر و آرایش الکترونی آن‌ها در واکنش دهنده‌ها تغییر می‌یابد. البته در یک واکنش شیمیایی، اتم‌ها نه بوجود می‌آیند و نه از بین می‌روند و تنها ترکیب، تجزیه یا بازآرایی می‌شوند. واکنش شیمیایی بیان یک تغییر شیمیایی است که ممکن است با آزاد کردن انرژی به صورت گرما، نور یا صوت همراه باشند و تولید گاز، تشکیل رسوب یا تغییر رنگ در پی داشته باشند.






روی دادن تغییر فیزیکی و تغییر شیمیایی بطور متوالی

مواردی وجود دارد که هر دو تغییر فیزیکی و شیمیایی بر روی یک پدیده، بطور متوالی اتفاق می‌افتند. برای نمونه، با حرارت دادن تکه‌ای قند در لوله آزمایش، ابتدا قند ذوب می‌شود که یک پدیده فیزیکی است. سپس به رنگ قهوه‌ای در می‌آید که نشان‌دهنده شروع تبدیل قند به کربن و یک پدیده شیمیایی است. در ادامه مقداری بخار آب به بالای لوله می‌رسد که نشانه تجزیه قند و ادامه پدیده شیمیایی پیشین است. سپس قطره‌های آب روی دیواره لوله آزمایش پدیدار می‌شود که نشان‌دهنده میعان بخار آب آزاد شده و یک پدیده فیزیکی است. در پایان، در لوله ماده‌ای سیاه رنگ، بی‌مزه و نامحلول در آب (برخلاف قند اولیه) باقی می‌ماند که این ماده ذغال است و با توجه به تغییر رنگ، مزه و حلالیت آن در آب نشان‌دهنده وقوع یک پدیده شیمیایی است.






انرژی شیمیایی

هر نوع پیوندی میان اتم‌های مختلف سازنده مولکول‌های یک جسم، نوعی انرژی در انرژی شیمیایی دارد که مقدار آن به نوع اتم‌ها و نحوه قرار گرفتن آن‌ها در مولکول بستگی دارد. در یک واکنش شیمیایی، در واقع اتصال اتم‌ها به یکدیگر در واکنش‌ها تغییر می‌کند و در نتیجه انرژی شیمیایی فراورده‌های واکنش با انرژی شیمیایی واکنش‌دهنده‌ها تفاوت پیدا می‌کند.

به عنوان مثال، واکنش گاز کلر با گاز هیدروژن را در نظر بگیریم. گاز کلر از مولکول‌های دو اتمی Cl۲ و گاز هیدروژن از مولکول‌های دو اتمی H۲ تشکیل شده‌اند. فراورده واکنش، کلرید هیدروژن HCl خواهد بود که در مقایسه با واکنش‌دهنده، پیوندهای کاملاً متفاوتی دارد و از این رو انرژی شیمیایی آنها متفاوت است.

اکنون این پرسش پیش می‌آید که با توجه به متفاوت بودن انرژی شیمیایی فراورده‌ها و واکنش‌دهنده‌ها و قانون پایستگی انرژی، این اختلاف انرژی چطور ظاهر می‌شود؟






تغییرات گرماگیر و تغییرات گرمازا

مطابق قانون پایستگی انرژی در هر واکنش باید انرژی کل ثابت بماند. بنابراین در واکنش‌ها، اختلاف انرژی میان فراورده‌ها و واکنش‌دهنده‌ها به صورت گرما ظاهر می‌شود. از این رو، واکنش‌هایی نظیر واکنش‌های سوختن متان که با تشکیل کلرید هیدروژن در آن‌ها، سطح انرژی فراورده‌های واکنش از مواد واکنش‌دهنده پایین‌تر باشد، به علت تولید انرژی گرمایی، گرمازا می‌گوییم و در مقابل واکنش‌هایی که در آنها سطح انرژی شیمیایی فراورده‌ها بیشتر از واکنش‌دهنده‌ها باشد، واکنش‌های گرماگیر نامیده می‌شوند و برای انجام چنین واکنشی باید مقداری گرما به اجزای واکنش‌دهنده داده شود، مانند تجزیه کردن کلرید آمونیوم جامد که با گرم کردن، به دو گاز آمونیاک و کلرید هیدروژن تبدیل می‌شود.

بنابراین در اندازه گیری و محاسبه انرژی واکنش‌های شیمیایی، چیزی که همیشه محسوس و قابل اندازه‌گیری است، تفاوت محتوای انرژی یا به عبارتی سطح انرژی مواد اولیه و محصولات عمل است که معمولاً به تغییر محتوای گرمایی، تغییر آنتالپی گفته می‌شود و با ΔH نمایش می‌دهند و در یک واکنش گرمازا داریم:

H1: سطح انرژی مواد واکنش دهنده

H2: سطح انرژی مواد حاصل

H2 <H1 H2-H1<0

به این ترتیب تغییر آنتالپی ΔH در یک واکنش انرژی‌ده، منفی است.

در یک واکنش گرماگیر داریم:

H2>H1→H2-H1>0→ΔH>0

پس تغییر آنتالپی، ΔH در یک واکنش انرژی‌گیر، مثبت است.






واکنش‌های شیمیایی برگشت‌پذیر و برگشت‌ناپذیر
واکنش‌های برگشت‌ناپذیر

در این قبیل واکنش‌ها، محصولات واکنش بر هم اثر شیمیایی ندارند. به همین دلیل واکنش فقط در جهت رفت انجام می‌گیرد و تا مصرف‌شدن کامل واکنش‌دهنده پیش می‌رود. مثلاً اگر تکه‌ای نوار منیزیم را در ظرف محتوی HCl وارد کنیم، واکنش شدیدی میان منیزیم و اسید رخ می‌دهد و کم کم در اسید حل و ناپدید می‌شود و همزمان با ناپدیدشدن فلز، حباب‌های گاز هیدروژن درون اسید به چشم می‌خورند که از ظرف خارج می‌شوند.

بنابراین این واکنش یک‌طرفه است و فقط در جهت رفت پیش می‌رود. یعنی اگر مقداری گاز هیدروژن را در محلول کلرید وارد کنیم، هیچ واکنشی انجام نمی‌گیرد.

Mg + 2HCl → MgCl2 + H2

علاوه بر واکنش بالا سوختن انواع سوخت‌ها مانند بنزین، نفت، گاز طبیعی و... در مجاورت هوا، محکم شدن تدریجی سیمان، پختن تخم مرغ، مچاله شدن نایلون در برابر شعله، نمونه‌هایی از واکنش‌های برگشت‌ناپذیرند.






واکنش‌های برگشت‌پذیر

این واکنش‌ها در شرایط مناسب در هر دو جهت رفت و برگشت پیش می‌روند، مثلاً اگر بخار آب را از روی گرد آهن داغ عبور دهند، اکسید آهن همراه با گاز هیدروژن پدید می‌آید.

(3Fe(s) + 4H2O(g) → Fe3O4(s) + 4H2(g

و اگر گاز هیدروژن را بر اکسید آهن (Fe3O4) عبور دهند، آهن و بخار آب تولید می‌شود. واکنش برگشت: (Fe3O4(s) + 4H2(g) → 3Fe(s) + 4H2O(l

واکنش رفت و برگشت در مجموع یک واکنش برگشت‌پذیر را تشکیل می‌دهند. در نتیجه واکنش اثر بخار آب بر آهن داغ برگشت‌پذیر است. در زندگی با موارد زیادی از واکنش‌های برگشت‌پذیر برخورد می‌کنیم، مانند شارژ دوبارهٔ باتری اتومبیل. مواد شیمیایی موجود در باتری خودرو هنگام تولید جریان برق به تدریج مصرف شده و به مواد دیگری تبدیل می‌شود. با شارژ مجدد باتری، واکنش‌های برگشت انجام می‌گیرند و مواد اولیه پدید می‌آیند.






مثال‌هایی از فرایندهای شیمیایی

همان طور که در پیش گفته شد، در تغییر شیمیایی ماهیت شیمیایی مواد تغییر می‌یابد و فراورده‌های جدید با خواص متفاوت از مواد اولیه تولید می‌شود. بنابراین پدیده‌های زیر نمونه‌هایی از تغییرهای شیمیایی هستند:

سوختن انواع سوخت‌ها. مانند بنزین، نفت، گاز طبیعی و... در مجاورت هوا
زنگ زدن فلزات
گوارش غذا
رسیدن میوه
پختن غذا
فساد مواد
سفت شدن تدریجی سیمان
انحلال آمونیاک در آب. زیرا در اثر انحلال، قسمتی از مولکول‌های آمونیاک با مولکول‌های آب ترکیب شده و ماده جدیدی به نام هیدروکسیدآمونیوم تولید می‌نمایند. به همین دلیل که واکنش شیمیایی بین حلال و حل شونده رخ می‌دهد، حل شدن بیشتر جنبه شیمیایی دارد.
لخته شدن مواد کلوئیدی. در اثر لخته شدن پیوندهای جدیدی تشکیل می‌گردد که باعث تجمع مولکول‌های یک محلول کلوئیدی می‌شود.
ایجاد گاز (اکسیژن) در اثر حرارت اکسید جیوه





مکانیک کوانتومی

مکانیک کوانتومی شاخه‌ای بنیادی از فیزیک نظری است که با پدیده های فیزیکی در مقیاس میکروسکوپی سرو کار دارد. دراین مقیاس، کُنِش های فیزیکی در حد و اندازه های ثابت پلانک هستند. بنیادی ترین تفاوت مکانیک کوانتومی با مکانیک کلاسیک در قلمرو کوانتومی است که به ذرات در اندازه های اتمی و زیراتمی می پردازد. مکانیک کوانتومی بنیادی‌تر از مکانیک نیوتنی و الکترومغناطیس کلاسیک است، زیرا در مقیاس‌های اتمی و زیراتمی که این نظریه‌ها با شکست مواجه می‌شوند، می‌تواند با دقت زیادی بسیاری از پدیده‌ها را توصیف کند. مکانیک کوانتومی به همراه نسبیت عام پایه‌های فیزیک جدید را تشکیل می‌دهند.

مکانیک کوانتومی که به عنوان نظریه کوانتومی نیز شناخته شده است، شامل نظریه ای درباره ماده، تابش الکترومغناطیسی و برهمکنش میان ماده و تابش است.






آشنایی

واژهٔ کوانتوم (به معنی «بسته» یا «دانه») در مکانیک کوانتومی از اینجا می‌آید که این نظریه به بعضی از کمیت‌های فیزیکی (مانند انرژی یک اتم در حال سکون) تحت شرایط خاص، مقدارهای گسسته‌ای نسبت می‌دهد. پایه‌های مکانیک کوانتومی در نیمهٔ اول قرن بیستم به وسیلهٔ ورنر هایزنبرگ، ماکس پلانک، لویی دوبروی، نیلس بور، اروین شرودینگر، ماکس بورن، جان فون نویمان، پاول دیراک، ولفگانگ پاولی و دیگران ساخته شد. بعضی از جنبه‌های بنیادی این نظریه هنوز هم در حال پیشرفت است.

در حوالی ابتدای قرن بیستم، کشفیات و تجربه های زیادی نشان میدادند که در مقیاس اتمی نظریه‌های کلاسیک نمی‌توانند توصیف کاملی از پدیده ها ارائه دهند. وجود همین نارسایی ها موجب نخستین ایده ها و ابداع ها در مسیر ایجاد نظریه کوانتومی شدند. بعنوان یکی از مثال های بسیار مشهور اگر قرار بود مکانیک نیوتنی و الکترومغناطیس کلاسیک بر رفتار یک اتم حاکم باشند، الکترون‌ها بایستی به سرعت به سمت هسته اتم حرکت کرده و بر روی آن سقوط می کردند و در نتیجه اتم ها ناپایدار میشدند. ولی در دنیای واقعی الکترون‌ها در نواحی خاصی دور اتم‌ها باقی می‌مانند و چنین سقوطی مشاهده نمیشود. تلاش اولیه برای حل این تناقض توسط نیلس بور با پیشنهاد فرضیه اش دایر بر وجود مدارهای مانا رخ داد، که موفقیت هایی هم در توصیف طیف اتم هیدروژن داشت.

پدیدهٔ دیگری که در این مسیر جلب توجه میکرد، مطالعه رفتار امواج الکترومغناطیسی مانند نور در برهمکنش با ماده بودند. ماکس پلانک در سال ۱۹۰۰ هنگام مطالعه بر روی تابش جسم سیاه پیشنهاد کرد که برای توصیف صحیح مساله تابش جسم سیاه، می توان انرژی این امواج را به شکل بسته‌های کوچکی (کوانتا یا کوانتوم) در نظر گرفت. آلبرت اینشتین از این فکر بهره برد و نشان داد که امواجی مثل نور را می‌توان با ذره‌ای به نام فوتون که انرژی‌اش به بسامد موج بستگی دارد توصیف کرد. در ادامه، با نظریه دوبروی دایر بر امکان توصیف حرکت ذرات بوسیله امواج، این نظریه‌ها به دیدگاهی به نام دوگانگی موج-ذره برای ذرات و امواج الکترومغناطیسی منجر شدند که برطبق آن، ذرات هر دوی رفتارهای موجی و ذره ای را از خود نشان می دهند.

تلاش ها برای تبیین تناقضات و ایجاد رهیافت های جدید، منجر به تکوین ساختار جدیدی موسوم به مکانیک کوانتومی شد که توسط دو فرمولبندی جداگانه (که بعدا معلوم شد هم ارزند) موسوم به مکانیک ماتریسی (عمدتا توسط هایزنبرگ) و مکانیک موجی (بیشتر توسط شرودینگر) توصیف می شد. بعنوان مثال، ایده ی توصیف ذرات با امواج، مولد ابداع مفهوم بسته های موجِ همبسته ذرات شد. به نوبۀ خود، تلاش برای یافتن معادلات حاکم بر تحول زمانی این بسته های موج به معادله موج یا معادله شرودینگر منتهی شد.

در تعبیری که توصیف شرودینگر از مکانیک کوانتومی بدست می دهد، حالت هر سیستم فیزیکی در هر لحظه به وسیلهٔ یک تابع موج مختلط توصیف می‌شود . چون تابع موج یک کمیت مختلط است، خود مستقیما مبین یک کمیت فیزیکی نیست، اما با استفاده از این تابع می‌توان احتمال بدست آمدن مقادیر مختلف حاصل از اندازه گیری یک کمیت فیزیکی را پیش‌بینی کرد. در حقیقت این احتمال با ضریبی از مربع قدرمطلق تابع موج (که کمیت اخیر حقیقی است) برابر است. بعنوان مثال از کاربرد این تابع احتمال، با آن می‌توان احتمال یافتن الکترون در ناحیهٔ خاصی در اطراف هسته در یک زمان مشخص؛ یا احتمال بدست آمدن مقدار خاصی برای کمیت تکانه زاویه ای سیستم را محاسبه کرد. یا مثلا به کمک تابع موج و توزیع احتمال بدست آمده از آن، می توان محتملترین مکان (یا مکان های) حضور یک ذره در فضا را یافت (که در مورد الکترون‌های یک اتم گاهی به آن اُربیتال می‌گویند). البته معنی این حرف این نیست که الکترون در تمام ناحیه ناحیه پخش شده‌است، و الکترون در یک ناحیه از فضا یا هست و یا نیست.

در مکانیک کلاسیک پیش بینی تحول زمانی مقادیر کمیت ها و اندازه گیری مقادیر کمیت ها در نظریه با هر دقت دلخواه ممکن است و تنها محدودیت موجود، خطای متعارف آزمایش و آزمایشگر، یا فقدان داده های اولیه کافی است. اما در مکانیک کوانتومی فرآیند اندازه گیری یک محدودیت ذاتی بهمراه خود دارد. در واقع نمی‌توان برخی کمیت ها (کمیت‌های مزدوج) را هم‌زمان و با هر دقت دلخواه اندازه گیری کرد؛ مانند مکان و تکانه. اندازه گیری دقیقتر هریک از این کمیت ها، منجر به از دست رفتن هرچه بیشتر داده های مربوط به کمیت دیگر می شود. این مفهوم که به اصل عدم قطعیت هایزنبرگ مشهور است، از مفاهیم بسیار مهم در مکانیک کوانتومی بوده و با مفهوم بنیادین "تاثیر فرآیند اندازه گیری بر حالت سیستم" که از ابداعات اختصاصی مکانیک کوانتومی (دربرابر مکانیک کلاسیک است) همبسته است.

توصیف مکانیک کوانتومی از رفتار سامانه‌های فیزیکی اهمیت زیادی دارد، و بسیاری از شاخه‌های دیگر فیزیک و شیمی از مکانیک کوانتومی به عنوان چهارچوب خود استفاده می‌کنند؛ مانند فیزیک ماده چگال، فیزیک حالت جامد، فیزیک اتمی، فیزیک مولکولی، شیمی محاسباتی، شیمی کوانتومی، فیزیک ذرات بنیادی، و فیزیک هسته‌ای. مکانیک کوانتومی علاوه بر این که دنیای ذرات بسیار ریز را توصیف می‌کند، برای توضیح برخی از پدیده‌های بزرگ‌مقیاس (ماکروسکوپیک) هم کاربرد دارد، مانند ابررسانایی و ابرشارگی. همچین کاربردهای وسیعی در حوزه فناوری های کاربردی ، بر مفاهیم و دستاوردهای مکانیک کوانتومی استوار هستند.






مکانیک کوانتومی و فیزیک کلاسیک

اثرات و پدیده‌هایی که در مکانیک کوانتومی و نسبیت پیش‌بینی می‌شوند، فقط برای اجسام بسیار ریز یا در سرعت‌های بسیار بالا آشکار می‌شوند. تقربیاً همهٔ پدیده‌هایی که انسان در زندگی روزمره با آن‌ها سروکار دارد به طور کاملاً دقیقی توسط فیزیک نیوتنی قابل پیش‌ بینی است.

در مقادیر بسیار کم ماده، یا در انرژی‌های بسیار پایین، مکانیک کوانتومی اثرهایی را پیش‌بینی می‌کند که فیزیک کلاسیک از پیش‌بینی آن ناتوان است. ولی اگر مقدار ماده یا سطح انرژی را افزایش دهیم، به حدی می‌رسیم که می‌توانیم قوانین فیزیک کلاسیک را بدون این که خطای قابل ملاحظه‌ای مرتکب شده باشیم، برای توصیف پدیده‌ها به کار ببریم. به این «حد» که در آن قوانین فیزیک کلاسیک (که معمولاً ساده‌تر هستند) می‌توانند به جای مکانیک کوانتومی پدیده‌ها را به درستی توصیف کنند، حد کلاسیک گفته می‌شود.






کوشش برای نظریهٔ وحدت‌یافته

وقتی می‌خواهیم مکانیک کوانتومی را با نظریهٔ نسبیت عام (که توصیف‌گر فضا-زمان در حضور گرانش است) ترکیب کنیم، به ناسازگاری‌هایی برمی‌خوریم که این کار را ناممکن می‌کند. حل این ناسازگاری‌ها هدف بزرگ فیزیکدانان قرن بیستم و بیست‌ویکم است. فیزیکدانان بزرگی همچون استیون هاوکینگ در راه رسیدن به نظریهٔ وحدت‌یافتهٔ نهایی تلاش می‌کنند؛ نظریه‌ای که نه تنها مدل‌های مختلف فیزیک زیراتمی را یکی کند، بلکه چهار نیروی بنیادی طبیعت -نیروی قوی، نیروی ضعیف، الکترومغناطیس و گرانش- را نیز به شکل جلوه‌های مختلفی از یک نیرو یا پدیده نشان دهد.






مکانیک کوانتومی و زیست‌شناسی

تحقیقات چند موسسه در آمریکا و هلند نشان داده است که بسیاری از فرایندهای زیستی از مکانیک کوانتومی بهره می‌برند. قبلا تصور می‌شد فتوسنتز گیاهان فرایندی بر پایه بیوشیمی است اما تحقیقات پروفسور فلمینگ و همکارانش در دانشگاه برکلی و دانشگاه واشنگتن در سنت لوییس به کشف یک مرحله کلیدی از فرآیند فوتوسنتز منجر شده که بر مکانیک کوانتومی استوار است. همچنین پژوهشهای کریستوفر آلتمن، پژوهشگری از موسسه دانش نانوی کاولی در هلند، حاکی از آن است که نحوه کارکرد سلولهای عصبی خصوصا در مغز که تا مدتها فرایندی بر پایه فعالیتهای الکتریکی و بیوشیمی پنداشته می‌شد و محل بحث ساختارگرایان و ماتریالیستها و زیستشناسها بود، شامل سیستمهای کوانتومی بسیاری است. این پژوهشها نشان می‌دهد که سلول عصبی یک حلزون دریایی می‌تواند از نیروهای کوانتومی برای پردازش اطلاعات استفاده کند. در انسان نیز، فیزیک کوانتومی احتمالا در فرآیند تفکر دخیل است.





رزونانس مغناطیسی هسته‌ای

تشدید مغناطیسی هسته‌ای (به انگلیسی: Nuclear magnetic Resonance) یک پدیدهٔ فیزیکی بر اساس مکانیک کوانتمی است.

در حضور یک میدان مغناطیسی قوی، انرژی هسته‌های عناصر مشخصی به علت خواص مغناطیسی این ذرات به دو یا چند تراز کوانتیده شکافته می‌شوند. الکترون‌ها نیز به طریقی مشابه هسته عمل می‌کنند. انتقالات میان ترازهای انرژی القاشدهٔ مغناطیسی حاصل می‌تواند با جذب تابش الکترومغناطیسی با بسامد مناسب انجام شود. درست شبیه انتقالات الکترونی که با جذب تابش فرابنفش یا مرئی صورت می‌پذیرد. اختلاف انرژی بین ترازهای کوانتومی مغناطیسی برای هسته‌های اتمی به مقداری است که با تابش در گستره‌ای از ۰٫۱ تا ۱۰۰MHz مطابقت دارد. طیف‌بینی NMR هم به منظور کارهای کمّی و هم به منظور شناسایی کیفی مولکول‌ها مورد استفاده قرار می‌گیرد. هر چند که قدرت اصلی این دستگاه در شناسایی کیفی ترکیبات آلی و زیستی بسیار پیچیده‌است.

در حالت عادی اختلاف انرژی بین ترازهای اسپین هسته صفر است، اما زمانی که اتم‌ها در حضور میدان مغناطیسی قرار میگیرد بر اساس خصوصیت Zeeman حالت تبهگن سیستم کاهش پیدا می کند.با نا پدید شدن میدان اتم تشدید کرده و تابش‌های را از خود نشان می دهد که با ان تشدید مغناطیس هسته می گویند.
دستگاه طیف‌سنج NMR







اجزای مهم یک طیف‌سنج NMR عبارت است از:

مغناطیس
پیمایش میدان مغناطیسی: یک جفت سیم‌پیچ به صورت موازی با سطوح مغناطیسی، که تناوب میدان اعمال شده در یک گسترهٔ کوچک را امکان‌پذیر می‌سازد.
منبع موج رادیویی
آشکارساز







کاربردها

در این روش می‌توان از طریق میزان احساس میدان به وسیله‌ی هسته یک اتم ، شکافتگی‌های حاصل از اتم‌های مجاور در طیف را در یافت. این شکافتگی‌ها نشان‌دهنده‌ی الگوی ساختاری پیچیده‌ای هستند که می‌توان از طریق آنها به چینش اتم‌ها در یک مولکول پی برد.






محاسبات

امروزه محاسبات بر اساس اصول مکانیک کوانتمی به عنوان یکی از روش‌های جدید محاسباتی مطرح است که در بسیاری از زمینه‌ها از محاسبات کلاسیک موفق‌تر بوده است. تشدید مغناطیسی هسته به دلیل این که از این اصول پیروی می‌کند به عنوان یکی از ماشین‌های محاسبات کوانتمی مطرح است. در سال ۱۳۸۱ شرکت IBM با استفاده از تشدید مغناطیس هسته توانست تجزیه به عوامل اول را در زمان چند جمله‌ای انجام دهد. این کار گرچه برای عدد ۱۵ انجام شد اما یک موفقیت بزرگ در علم محاسبات است.





نظریه نسبیت

نظریه یا نگره نسبیت یا همان نسبیت دو نظریه اصلی و معروف نسبیت خاص و نسبیت عام از آلبرت اینشتین را در بر می‌گیرد. ایده اصلی در پشت این نظریه آن است که زمان و فضا با هم مرتبط هستند و نه جدای از هم و ثابت.

آغاز به کار بردن واژه «نگره نسبیت» به ۱۹۰۶ بر می‌گردد؛ هنگامی که ماکس پلانک ترکیب "نظریه نسبی" (در آلمانی: Relativtheorie) را به کار برد و بر چگونگی به کار برده شدن اصل نسبیت توسط این نظریه تاکید کرد. اما این آلفرد بوخرر بود که در بخش بحث مقاله پلانک، برای نخستین بار ترکیب "نظریه نسبیت" (در آلمانی: Relativitätstheorie) را به کار برد.






نسبیت خاص

نسبیت خاص نگره‌ای بر روی ساختار فضازمان است. این نگره در سال ۱۹۰۵ توسط اینشتین و در مقاله‌ای به نام "درباره الکترودینامیک اجسام در حال حرکت" ارایه شد. این نگره بر پایه دو فرضی است که در تناقض با مکانیک کلاسیک هستند:

قوانین فیزیک برای همه ناظران در دستگاه مرجع لخت نسبیت به یکدیگر ثابت هستند (اصل نسبیت).
سرعت نور در خلا برای همه ناظران، صرفنظر از حرکت نسبیشان و یا حرکت منبع تولید کننده نور، ثابت است.

چنین نگره‌ای همخوانی بهتری با آزمایش‌های تجربی نشان می‌دهد. برای نمونه، آزمایش مایکلسون-مورلی نه تنها تاکید کننده فرض دوم است که نتایج جالب دیگری را نیز به همراه داشت:

نسبیت همزمانی: دو رویداد که برای یک ناظر همزمان هستند، ممکن است برای ناظر دیگری که نسبت به ناظر نخست در حال حرکت است همزمان نباشند.
اتساع زمانی: ساعت‌های در حال حرکت گذر زمان کمتری را نسبت به ساعت‌های ساکن تجربه می‌کنند و نشان می‌دهند.
انقباض طول: اشیای در حال حرکت در نظر یک ناظر ایستا کوتاهتر به چشم می‌آیند.
هم‌ارزی جرم و انرژی: E=mc^2 جرم و انرژی با هم هم‌ارز هستند و به هم تبدیل می‌شوند.
نور بیشترین سرعت ممکن را دارد: هیچ جسم مادی و یا پیامی نمی‌تواند با سرعتی بیشتر از سرعت نور سفر کند.

ویژگی تعریف کننده نسبیت خاص در جابجایی ترادیسی‌های گالیله مورد استفاده در مکانیک کلاسیک با تبدیلات لورنتس است.






نسبیت عام

نسبیت عام ٬ نظریه‌ای هندسی برای گرانش است که در سال ۱۹۱۶ توسط آلبرت اینشتین مطرح گردید و تصویر کنونی فیزیک جدید از گرانش را تشکیل می‌دهد. نسبیت عام ٬ نظریه نسبیت خاص و قانون جهانی گرانش نیوتن را تعمیم می‌دهد و توصیفی یکتا از گرانش به عنوان یک ویژگی هندسی فضا و زمان ٬ یا فضازمان ارائه می‌کند. به خصوص در این نظریه ٬ انحنای فضازمان ٬ به طور مستقیم بهانرژی و تکانه هر ماده و تابشی که موجود باشد مربوط است. این رابطه توسط معادلات میدان اینشتین مشخص می‌گردد ٬که یک دستگاه معادلات مشتقات پاره‌ای را تشکیل می‌دهند.

برخی از پیش‌بینی‌های نظریه نسبیت عام ٬به خصوص موارد مرتبط با گذشت زمان٬ هندسه‌ی فضا٬حرکت اجسام هنگام سقوط آزاد و انتشار نور ٬ با پیش‌بینی‌های نظریه‌های فیزیک کلاسیک تفاوت بسیاری دارند. برای نمونه از چنین تفاوت‌هایی ٬ می‌توان به اتساع گرانشی زمان ٬ همگرایی گرانشی ٬ انتقال به سرخ گرانشی نور و تاخیر زمانی گرانشی اشاره کرد. پیش‌بینی‌های نظریه نسبیت عام در همه آزمون‌ها تا به امروز تایید شده‌اند. هرچند نسبیت عام تنها نظریه نسبیتی نور نیست ٬ ساده‌ترین نظریه ای است که با آزمایش‌ها مطابقت دارد. البیته پرسش‌های بدون پاسخی باقی مانده‌اند ٬ که بنیادی‌ترین آن‌ها چگونگی آشتی دادن نسبیت عام با فیزیک کوانتومی برای ایجاد یک نظریه خود-سازگار و کامل از گرانش کوانتومی می‌باشد.

نظریه اینشتین نتایج اخترفیزیکی مهمی به دنبال دارد.برای مثال ٬ وجود سیاه‌چاله‌ها را نشان می‌دهد – مکان‌هایی در فضا که در آن فضا و زمان طوری ناهموار شده‌اند که هیچ چیز ٬ حتی نور ٬ نمی‌تواند از آن فرار کند - ٬حالتی که در پایان عمر برای ستاره‌های پرجرم ایجاد می‌گردد. شواهد فراوانی وجود دارد که نشان می دهد تابش‌های شدید گسیل شده از برخی اجسام نجومی٬ مربوط به سیاه‌چاله‌ها است. برای مثال ٬ ریزاختروش‌ها و یا هسته کهکشانی فعال نتیجه حضور سیاه‌چاله های ستاره‌وار و سیاه‌چاله‌هایی با جرم‌های بسیار بسیار بیشتر هستند. خم‌شدن نور توسط گرانش می‌تواند منجر به پدیده‌ای موسوم به همگرایی گرانشی گردد که موجب دیده‌شدن چند تصویر از یک شئ نجومی دور٬ در آسمان می‌شود. نسبیت عام همچنین وجوپ امواج گرانشی را پیش‌بینی می‌کند ٬ که تاکنون تنها به صورت غیرمستقیم مشاهده شده‌اند. مشاهده و اندازه‌گیری مستقیم آن‌ها هدف پروژه‌هایی نظیر لیگو ٬ آنتن فضایی تداخل‌سنج لیزری ناسا/اسا و آرایه‌های گوناگون زمان‌سنجی تپ‌اختر است. همچنین ٬ نسبیت عام اساس مدل‌های کنونی کیهان‌شناختی از یک جهان در حال انبساط است.





شیمی تجزیه
شیمی تجزیه شاخه‌ای از دانش بنیادین شیمی است که به مطالعه روش‌های جداسازی، شناسایی و بررسی کمی اجزاطبیعی یا مصنوعی یک ماده می‌پردازد.انواع آنالیز و تجزیه و تحلیل که در این دانش به کار گرفته می‌شوند در یک نگاه کلی به دو دسته کمی و کیفی تقسیم می‌شوند.در تجزیه کیفی نوع اجزای موجود در نمونه تعیین می‌شود و در تجزیه کمی مقدار و یا غلظت هر یک از این اجزا تعیین می‌شود.در حالت کلی آنالیز کیفی بر آنالیز کمی تقدم دارد در واقع ابتدا نوع اجزا و سپس مقادیر کمی آن‌ها تعیین می‌شود. روش‌های تجزیه به دو دسته روش‌های کلاسیک و روش‌های دستگاهی تقسیم می‌شوند. روش‌های کلاسیک که به روش‌های شیمی تَر هم شهرت دارند از ابزار و یا سامانه‌های سنجش چندان پیشرفته‌ای بهره نمی‌برند.اصلی ترین انواع روش‌های کلاسیک روش‌های وزن‌سنجی و روش‌های تیتراسیون هستند. در مقابل در روش‌های دستگاهی سامانه‌ها و دستگاه‌های تجزیه و تحلیل نقش اساسی را ایفا می‌کنند.از جمله روش‌های ابزاری می‌توان به روش‌های الکتروشیمیایی،روش‌های طیف سنجی و روش‌های کروماتوگرافی اشاره کرد.






مفاهیم پایه

نمونه:عبارت است از بافتی کلان که عمل تجزیه و تحلیل بر روی آن انجام می‌شود. آنالیت:آن بخشی از نمونه است که قصد بررسی کمی آن را داریم.به عنوان مثال در عمل اندازه گیری میزان منیزیم در خاک،خاک نمونه و منیزیم آنالیت می‌باشد ویا در اندازه گیری میزان اوریک اسید در خون،خون نمونه و اوریک اسید آنالیت می‌باشد. در متون علمی در ارتباط با نمونه اغلب لفظ آنالیز و یا تجزیه را به کار می‌برند و در مورد آنالیت لفظ تعیین،همچنین محاسبه کاربرد دارد.






عوامل مهم در کارایی روش‌های تجزیه

نخستین عامل حائز اهمیت گزینش پذیری روش است به عنوان مثال فرض کنید که ما قصد اندازه گیری یون منیزیم را در یک محلول داریم اما روشی اتخاذ کرده‌ایم که یون‌های دیگری مثلا یون آلومینیم و یا اسکاندیم هم به آن جواب می‌دهد این انتخاب ما را درگیر تلاش و صرف هزینه برای کنار گذاشتن چنین عوامل مزاحمی می‌کند که باعث می‌شوند نتیجه بررسی با آن چه حقیقتا به دنبال آن هستیم مغایرت داشته باشد.از این جهت بسیار مهم است که تا جایی که امکان دارد از روش‌های گزینش‌پذیر که به تعداد کم تری از آنالیت‌ها پاسخگوست،بهره ببریم.عامل دوم حساسیت روش است در بررسی‌هایی که حتی تغییرات کوچک آنالیت در برآورد نتیجه نقش اساسی دارند بهره گیری از دستگاهی که تنها به تغییر در مقیاس بزرگ پاسخ می‌دهد مطلوب نیست.عامل مهم سوم سرعت است برای مثال در حین عمل‌های جراحی گاهی لازم است که آنالیز روی خون شخص انجام شود ونتیجه این آزمایش در ادامه روند جراحی اثر گذار است در چنین مواردی به کار بردن یک روش زمان گیر مطلوب نخواهد بود و در نهایت این که روش ما از لحاظ اقتصادی مقرون به صرفه باشد نیز حائز اهمیت است.






روش‌های کلاسیک

با وجود آن که علم شیمی تجزیه امروزه تحت اثر عمده روش‌های ابزاری قرار دارد با این حال این روش‌های کلاسیک هستند که از بسیاری جهات شالوده علم شیمی تجزیه را تشکیل می‌دهند و هم چنین اساس بسیاری از ابزارها و سامانه‌های اندازه گیری بر روش‌های کلاسیک است که در ادامه شرح داده می‌شود.




آنالیز کیفی

آنالیز کیفی وجود یا نبود یک ترکیب در یک نمونه را معین می‌کند ولی در رابطه با جرم و یا غلظت ترکیب‌های یاد شده اطلاعاتی نمی‌دهد.همان گونه که از نام آنالیز کیفی پیداست این نوع آنالیز با "اندازه گیری مقدار" سر و کار ندارد.






آزمون‌های شیمیایی

آزمون‌های شیمیایی بیشماری وجود دارند که کارکرد کیفی دارند از جمله "آزمون اسید"که در تشخیص طلا کاربرد دارد و یا "آزمون کسل-مایر" که برای تعیین وجود خون کاربرد دارد.






آزمون شعله

آزمون شعله نیز از روش‌های آنالیز کیفی می‌باشد.در این آزمایش شعله در اثر تماس با محلول آنالیت‌های خاص تغییر رنگ می‌دهد.به عنوان مثال کات کبود به دلیل آن که حاوی یون‌های مس مس باشد به شعله رنگ سبز می‌دهد.البته صرف تحلیل رنگ شعله با چشم غیر مسلح نتیجه این آزمون را قابل اعتماد نمی‌کند بلکه اغلب این نورهای تغییر رنگ داده را به عنوان ورودی به دستگاه طیف بین استفاده کرده و از روی طیف حاصله و تططبیق آن با طیف‌های اتمی به وجود یا نبود عنصر یا ترکیب خاصی در نمونه اولیه پی می‌برند.رابرت بونزن و همکارش گوستاو کیرشهف پیشگام بهره گیری از آزمون شعله بودند و با همین روش هنگام بررسی طیف ناشی از یک سنگ معدنی لیتیم دار دو عنصر جدید روبیدیم(Rb) و سزیم(Cs) را کشف نمودند.






روش‌های وزن سنجی

وزن سنجی نوعی از آنالیز کیفی هست که مقدار ماده را معین می‌کند.یک نمونه از چنین آنالیزی که در آزمایش‌های سطوح مقدماتی صورت می‌گیرد تعیین میزان آب موجود در یک ترکیب آب پوشیده از طریق حرارت دادن به نمونه و اندازه گیری اختلاف جرم آن پیش و پس از حرارت دادن است که میزان آب تبخیر شده را نشان می‌دهد.






سنجش‌های حجمی

سنجش‌های حجمی(تیتراسیون) نوع دیگری از روش‌های آنالیز کمی می‌باشد که هدف آن یافتن یک نقطه هم ارزی است که مقدار یک گونه خاص را در یک محلول معین می‌کند.یکی از نمونه‌های سنجش حجمی که برای بسیاری آشناست سنجش‌های حجمی اسید-باز می‌باشد که در آن نقطه هم ارزی با تغییر رنگ یک شناساگر شناسایی می‌شود.انواع دیگری از سنجش‌های حجمی وجود داند از جمله سنجش‌های حجمی پتانسیومتری.






روش‌های دستگاهی

در روش‌های ابزاری از سامانه‌های اندازه گیری و ابزارها برای تجزیه و تحلیل استفاده می‌شود این روش‌ها نوعا به این صورت هستند که یک محرک اولیه(نور،گرما،جریان الکتریکی،ولتاژ و...)به نمونه داده می‌شود و نمونه در پاسخ به این عمل سیگنال‌هایی را گسیل می‌کند که وارد شناساگر می‌شوند.در شناساگر این سیگنال‌ها به روش‌های گوناگون تقویت می‌شوند و نتیجه نهایی روی صفحه نمایشگر یک رایانه نمایش داده می‌شود.






طیف سنجی

طیف سنجی عبارت است از اندازه گیری برهمکنش مولکول‌ها و پرتوهای الکترومغناطیسی.از جمله انواع طیف سنجی می‌توان به طیف جذب اتمی ،طیف گسیل اتمی ، طیف سنجی مرئی-فرابنفش ، طیف سنجی فروسرخ، طیف سنجی پرتوی ایکس و فلوئورسانس و طیف سنجی مغناطیسی هسته(ان ام آر) اشاره کرد.






طیف سنجی جرمی

هدف از طیف سنجی جرمی تعیین نسبت بار به جرم گونه‌ها می‌باشد.در این روش آنالیز از راهکارهای گوناگونی به منظور یونش استفاده می‌شود از جمله:بمباران الکترونی،استفاده از پرتوی ایکس و...






آنالیز الکتروشیمیایی

آنالیز الکتروشیمیایی با اندازه گیری اختلاف پتانسیل و/یا شدت جریان الکتریکی یک پیل الکتروشیمیایی حاوی آنالیت همراه است.آنالیزهای الکتروشیمیایی را می‌توان برحسب این که چه ویژگی‌هایی از پیل در خلال آن‌ها مورد بررسی قرار می‌گیرد و یا این که پیل در خلال آن‌ها دستخوش چه تغییراتی می‌شود رده بندی کرد.بر همین اساس این روش‌ها به سه دسته پتانسیومتری(اندازه گیری اختلاف پتانسیل پیل)،کولومتری(اندازه گیری شدت جریان در طول زمان)و ولتامتری(اندازه گیری اختلاف پتانسیل پیل حین ایجاد تغییر در شدت جریان) تقسیم می‌شود.






آنالیز حرارتی

گرماسنجی و آنالیز گرماوزنسنجی(thermogra alysis)از جمله روش‌هایی هستند که به تحلیل برهمکنش میان ماده و حرارت می‌پردازند.






جداسازی

روش‌های جداسازی به منظور کاهش پیچیدگی مخلوط ماده مورد استفاده قرار می‌گیرد.از جمله این روش‌ها می‌توان به کروماتوگرافی و الکتروفورز اشاره کرد.






روش‌های هیبریدی

روش‌های چندگانه‌ای که به شکل ترکیبی از روش‌های بالا خود را نشان می‌دهند روش‌های هیبریدی می‌گوییم.از جمله این روش‌ها می‌توان به کروماتوگرافی-ظیف سنجی جرمی گاز،کروماتوگرافی-طیف سنجی فروسرخ گاز،کروماتوگرافی-طیف سنجی جرمی مایع و روش‌های هیبریدی جز این موارد اشاره کرد که امروزه یا به طور گسترده مورد استفاده قرار می‌گیرند و یا در مراکز علمی و تحقیقاتی در حال توسعه یافتن هستند.در نگارش نام این روش‌ها گاهی به جای نماد خط تیره از نماد کج خط(slash) استفاده می‌شود به خصوص در صورتی که نام یک یا چند تا از روش‌های تشکیل دهنده پیکره روش هیبریدی خود دارای نماد خط تیره باشند.به عنوان نمونه می‌توان بر خلاف الگوی نگارشی رعایت شده در بالا نوشت:کروماتوگرافی/طیف سنجی جرمی گاز.روش‌های هیبریدی امروزه به طور گسترده در شیمی و زیست شیمی مورد استفاده قرار می‌گیرند.






ریزنگاری

تصویر کردن مولکول‌ها،سلول‌ها و بافت‌های زیست شناختی یک گرایش فعال و مهم در علم تجزیه می‌باشد.ترکیب این روش‌ها با روش‌های قدیمی تر آنالیز باعث تغییرات شگرفی در علم تجزیه شده است.می توان روش‌های ریزنگاری را در سه رده کلی ریزنگاری نوری،ریز نگاری الکترونی و ریز نگاری پراب پویش قرار داد.به دلیل پیشرفت سریع در زمینه صنایع رایانه و دوربین این زمینه از شیمی تجزیه شاهد پیشرفت‌های عظیم و قابل توجهی بوده است.






آزمایشگاه‌های تراشه‌ای

تراشه‌های کوچکی امروزه در دسترس هستند که با داشتن ابعاد بسیار خرد در حد چند میلیمتر تا چند سانتی متر مربع برای تحلیل حجم‌های بسیار اندک سیالات(در حد چند پیکو لیتر)مورد استفاده قرار می‌گیرند.





شیمی آلی
شیمی آلی زیر مجموعه ای از دانش شیمی است که درباره ترکیبات کربن یا مواد آلی سخن می‌گوید، عنصر اصلی که با کربن ترکیبات آلی را تشکیل می دهند، هیدروژن می باشد. در گذشته به موادی که ریشه گیاهی یا حیوانی داشتند، مواد آلی می گفتند اما امروزه مواد آلی را می توان از طریق روش های صنعتی و آزمایشگاهی و به کمک مواد معدنی نیز سنتز کرد. موادی که از منابع آلی بدست می آیند، در یک ویژگی مشترک هستند و آن اشتراک در دارا بودن عنصر کربن است. دو منبع بزرگ مواد آلی که از آنها مواد آلی با ترکیبات ساده، تأمین می شوند، نفت و زغال سنگ هستند، این دو ماده فسیلی در مفهوم قدیمی آلی بوده و حاصل تجزیه جانوران و گیاهان هستند. این ترکیبات ساده به عنوان مصالح ساختمانی، در ساختن ترکیبات بزرگتر و پیچیده تر مصرف می گردند. شیمی آلی، شیمی ترکیبات کربن با سایر عناصر به ویژه هیدروژن، اکسیژن، نیتروژن، هالوژن ها و غیر فلزات دیگر نظیر گوگرد و منیزیوم است. الکل ها، اترها، هیدروکربن ها، آلدئیدها، کتون ها، کربوکسیلیک اسیدها، ترکیبات آلیفاتیک حلقوی، کربانیون ها، آمین ها، فنل ها، درشت مولکول ها و بسپارها (پلیمر) و نظیر آنها جزء مواد آلی بوده و مباحث شیمی آلی را به خود اختصاص داده اند. امروزه از مواد آلی و دانش شیمی آلی در رنگ سازی، کاغذ و جوهرسازی، مواد غذایی، پوشاک، پتروشیمی، مواد پلاستیکی و لاستیکی، داروسازی، پزشکی و ده ها صنعت دیگر بهره می برند. افزون بر بیست میلیون ترکیب شناخته شده کربن وجود دارد و هر ساله نیم میلیون ملکول جدید به خانواده مواد آلی اضافه می شوند. شیمی آلی شالوده زیست شناسی و پزشکی است. ساختمان موجودات زنده به غیر از آب، عمدتاً" از مواد آلی ساخته شده اند، مولکول های مورد بحث در زیست شناسی مولکولی همان مولکول های آلی هستند. امروزه ما در عصر کربن زندگی می کنیم، هر روزه روزنامه ها و مجلات، ذهن ما را متوجه ترکیبات کربن نظیر کلسترول، چربی های اشباع نشده، هورمون ها، استروئیدها، حشره کش ها و فرومون ها می نماید. در دهه های گذشته به خاطر نفت جنگ های متعددی راه افتاده است، همچنین دو فاجعه نازک شدن لایه اوزون که عمدتاً" به خاطر وجود کلرو فلوئورو کربن ها می باشد و پدیده گازهای گلخانه ای که ناشی از حضور متان، کلرو فلوئورو کربن ها و دی اکسید کربن است، زندگی انسان ها را به خطر انداخته است.






ساختمان و ویژگی ها
آرایش و درشتی مولکول های مواد آلی

تا حدود سال 1850 میلادی بسیاری از دانشمندان بر این باور بودند که منشأ مواد آلی، جانداران و گیاهان هستند، آنها تصور می کردند که مواد آلی را هرگز نمی توان از مواد معدنی و غیر آلی تولید نمود. دانشمندان همواره دنبال پاسخ به این پرسش بودند که چه ویژگی در ترکیبات کربن وجود دارد که آنها را از ترکیبات مربوط به صد و چند عنصر دیگر جدول تناوبی متمایز کرده است. تعداد بسیاری از ترکیبات کربن وجود دارند که مولکول های آنها می توانند بسیار بزرگ و پیچیده باشند. تعداد ترکیباتی که دارای عنصر کربن هستند چندین برابر بیشتر از تعداد ترکیبات بدون کربن است. مولکول های آلی شامل هزاران اتم شناخته شده اند و ترتیب قرار گرفتن اتم ها حتی در مولکول های نسبتاً" کوچک نیز بسیار پیچیده است. یکی از مسائل اصلی در شیمی آلی، آگاهی از طرز قرار گرفتن اتم ها در مولکول ها و یا تعیین ساختمان ترکیبات است.






ویژگی منحصر به فرد کربن

اتم های کربن می توانند به میزانی که برای اتم هیچ عنصر دیگری مقدور نیست، به یکدیگر متصل شوند. همچنین اتم های کربن می توانند زنجیرهایی شامل هزاران اتم و یا حلقه هایی با اندازه های متفاوت ایجاد نمایند، زنجیرها و حلقه ها می توانند دارای شاخه و پیوندهای عرضی باشند، به اتم های کربن این زنجیرها و حلقه ها، اتم های دیگری نیز می تواند وصل شود، این اتم ها معمولاً" هیدروژن، فلوئور، کلر، برم، ید، اکسیژن، نیتروژن، گوگرد، فسفر و سایر اتم های مختلف می باشند. هر آرایش مختلف از اتم ها مربوط به ترکیب متفاوتی است و هر ترکیب یک سری خواص شیمیایی و فیزیکی خاص خود را دارد، از این رو غیر منتظره نیست که امروزه ده ها میلیون ترکیب شناخته شده کربن وجود داشته باشد.






پیوند شیمیایی

بررسی ساختمان مولکول ها را باید با بحث درباره پیوندهای شیمیایی یعنی نیروهایی که اتم ها را در یک مولکول نگاه می دارند، شروع نمود. دو نوع پیوند یونی و کووالانسی، پیوندهایی هستند که به وسیله آن اتم ها با یکدیگر اتصال برقرار می کنند. از میان این دو پیوند، پیوند کووالانسی، پیوند متدوال در ترکیبات کربن است و مهمترین پیوند در مطالعه شیمی آلی است.






مواد آلی در شیمی آلی

مواد آلی دارای گستره ای بزرگ می باشند و بسیار متفاوت و متنوع هستند. از این دسته مواد می توان، پارافین ها، روغن ها، هیدرو کربن ها، الفین ها، استیلن ها، ترپن ها، الکل ها، اسیدهای کربوکسیلیک، استرها، اترها، اپوکسیدها، آلدئیدها، کتون ها، آمین ها، آمیدها، ترکیبات آروماتیک، اسیدهای آلی، ایزوسیونات ها، محصولات استخلافی بنزن، الیاف نساجی، رنگ های رنگرزی و صنعتی و ... را نام برد.






ترکیبات هیدرو کربنی

برخی از ترکیبات آلی فقط شامل دو عنصر، هیدروژن و کربن هستند و از این رو به عنوان هیدرو کربن شناخته می شوند. هیدرو کربن ها بر اساس ساختمانشان، به دو دسته اصلی، آلیفاتیک و آروماتیک تقسیم می شوند. هیدرو کربن های آلیفاتیک خود به گروه های آلکان ها، آلکن ها، آلکین ها و ترکیبات حلقه ای مشابه سیکلو آلکان ها و غیره تقسیم می گردند.






متان

ساده ترین ماده شیمی آلی متان است، مولکول متان دارای یک اتم مرکزی کربن و چهار اتم محیطی هیدروژن است که با زاویه 109/5 درجه دور اتم کربن قرار گرفته اند. متان محصول نهایی متلاشی شدن ناهوازی (بدون هوا) گیاهان یعنی از هم پاشیدگی بعضی از مولکول های پیچیده می باشد. متان تشکیل دهنده قسمت اعظم (حدود 97 درصد) گاز طبیعی است. متان گاز آتشگیر خطرناک معادن زغال سنگ است و به صورت حباب های گاز از سطح مرداب ها خارج می گردد. گاز متان از ترکیب مونو اکسید کربن و هیدروژن حاصل می گردد.






کلرو فلوئورو کربن ها

مشتقات هالوژنه متان را کلرو فلوئورو کربن ها می گویند. اگر به جای هیدروژن های متان اتم های هالوژن جایگزین گردد، این محصولات حاصل می شوند. گازهای مورد استفاده در یخچال ها و کولرهای گازی و انواع اسپری، از این دسته مواد هستند.






آلکان ها

آلکان ها که نقطه آغازگر آن ها متان است به ترکیبات غیر حلقوی و خطی کربن و هیدروژن اطلاق می شود، پیوند یگانه کووالانسی در این ترکیبات اتم های کربن و هیدروژن را به هم وصل کرده است. این هیدرو کربن ها بر اساس ساختمانشان به خانواده متان تعلق دارند و خواص آنها از خواص متان پیروی می کند. در آلکان ها تعداد اتم های هیدروژن نسبت به اتم های کربن، دو برابر به علاوه دو می باشد. یعنی مثلاً" در مولکول بوتان، چهار اتم کربن و ده اتم هیدروژن وجود دارد. در آلکان ها، انتظار می رود هرچه تعداد اتم ها افزایش یابد، تعداد آرایش های ممکن اتم ها نیز زیادتر می شود. به تدریج که در سری آلکان ها پیش می رویم، تعداد ایزومرها در همرده های متوالی به میزان شگفت آوری افزایش می یابند. برای مثال هپتان دارای نه ایزومر می باشد، یعنی در شیمی آلی نه ماده مختلف با خواص متفاوت هستند که همگی فرمولشان C7H16 است. برای نامیدن ترکیبات مختلف و پیچیده آلی از روش استاندارد آیوپاک استفاده می کنند.
وب‌نوشت
وب‌نوشت یا وبلاگ که به آن تارنوشت ، تارنگار یا بلاگ (به انگلیسی: Blog) هم می‌گویند، نوعی از صفحات اینترنتی است با محتوای شخصی که مطالب آن بر مبنای زمانی که ثبت شده گروهبندی و به ترتیب از تازه‌ترین رخداد به قدیم ارائه می‌گردد.




نویسندهٔ وب‌نوشت، وب‌نویس یا تارنویس نامیده می‌شود و ممکن است بیش از یک نفر باشد، وب‌نویس به گزارش مداوم رویدادها، خاطرات، و یا عقاید یک شخص یا یک سازمان می‌پردازد. واحد مطالب در وب‌نوشت، پست است، در حالی که واحد مطالب در وب‌گاه صفحه می‌باشد. معمولاً در انتهای هر مطلب، برچسب تاریخ و زمان، نام نویسنده و پیوند ثابت به آن یادداشت ثبت می‌شود. فاصلهٔ زمانی بین مطالب وب‌نوشت لزوماً یکسان نیست و زمان نوشته‌شدن هر مطلب به خواست نویسندهٔ وب‌نوشت بستگی دارد. مطالب نوشته شده در یک وب‌نوشت همانند محتویات یک وب‌گاه معمولی در دسترس کاربران قرار می‌گیرد. در بیشتر موارد وب‌نوشت‌ها دارای روشی برای دسترسی به بایگانی یادداشت‌ها هستند (مثلاً دسترسی به بایگانی بر حسب تاریخ یا موضوع). بعضی از وب‌نوشت‌ها امکان جستجو برای یک واژه یا عبارت خاص را در میان مطالب به کاربر می‌دهند.



واژه‌شناسی و واژه‌گزینی
واژهٔ وبلاگ اولین‌بار توسط یورن بارگر استفاده شد که یک هم‌آمیزی از دو واژهٔ وب و لاگ است. واژهٔ لاگ، واژه‌ای‌ست از ریشه واژهٔ یونانی لوگاس که در قرون میانه در معنای دفتر گزارش سفر کشتی‌ها به کار می‌رفته‌است. لاگ در زبان تخصصی رایانه به پرونده‌هایی گفته می‌شود که گزارش وقایع رخ‌داده در رایانه را ثبت می‌کنند. بلاگ نیز شکل کوتاه‌شده وبلاگ است.



انواع وب‌نوشت‌ها

به جز نوع نوشتاری وب‌نوشت، با گسترش روزافزون فناوری‌های اینترنتی، سامانه‌های نوینی از وب‌نوشت‌ها نیز گسترش پیدا کرده‌است.

در حال حاضر وب‌نوشت‌ها به صورت‌های مختلفی مانند وب‌نوشت عکسی، ویدئو بلاگ، فلش بلاگ، پادکست و صدا بلاگ نیز وجود دارند.



تاریخ وب‌نویسی
نخستین وب‌نوشت دنیا SCRIPTING NEWS متعلق به دیوید واینر بود. در آغاز سال ۱۹۹۹ ۲۳ وب‌نوشت در اینترنت وجود داشت و در عرض چند ماه تعداد آن‌ها به میلیون‌ها وب‌نوشت رسید که از نقاط مختلف جهان می‌نوشتند.


وب‌نوشت‌های فارسی

در ایران نخستین وب‌نوشت را سلمان جریری دانشجوی ۲۳ ساله مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر، در ۱۶ شهریور ۱۳۸۰ ایجاد کرد و موج وب‌نویسی در مهرماه ۱۳۸۰، توسط حسین درخشان روزنامه نگار مقیم تهران مقاله‌ای با عنوان«چگونه در اقیانوس اطلاعاتی این روزها غرق نشویم» در مجله دنیای کامپیوتر در ایران آغاز شد. نخستین وب‌نوشت فارسی زبان ایرانی با استفاده از «بلاگ اسپات» و دوماه پس از یازدهم سپتامبر ۲۰۰۱ راه اندازی شد. چندماه بعد نخستین ارائه‌دهندهٔ خدمات وب‌نوشت فارسی یعنی «پرشین بلاگ» راه اندازی شد. در سال اول حدود ۱۰۰ وب‌نوشت ایجاد شد و سال‌های بعدی با ایجاد سرویس‌های پرشین بلاگ، بلاگ اسکای و بلاگفا به ده‌ها هزار رسید.

طبق اطلاعات مندرج در سایت بلاگ سنسوس، در سال ۲۰۰۸ وب‌نوشت‌های فارسی در رتبه دهم زبان‌های وب‌نوشتی رایج در جهان قرار داشتند. گزارش‌های جدید نشان می‌دهد که در مجموع بیش از ۴٫۵ میلیون وب‌نوشت فارسی به ثبت رسیده که در میان آنها بیش از ۴۵۰ هزار وب‌نوشت فعال وجود دارد. در حال حاضر در ایران بیش از هشت میلیون وب‌نوشت ثبت شده وجود داشته و ایران از این حیث جایگاه دهم را در جهان داراست.

در میان افغانان نخستین وب‌نوشت را ضیا افضلی به نام «غزل امروز افغانستان» از کانادا نوشته‌است. نخستین وب‌نوشتی که از داخل افغانستان نوشته شده‌است را وحید پیمان ایجاد کرد.



ارائه‌دهنده خدمات وب‌نوشت

وب‌گاه ارائه‌دهندهٔ خدمات وب‌نوشت یک نوع وبگاه است که با کمک آن می‌توان به سادگی وب‌نوشت ایجاد کرد. بسیاری از این وبگاه‌های ارائه کنندهٔ این نوع خدمات، از نرم‌افزارهای وب‌نوشت معروف استفاده می‌کنند. به عنوان نمونه وردپرس دات کام از نرم‌افزار وردپرس استفاده می‌کند. مزیت این نوع وبگاه‌ها در آن است که کاربر خود مجبور به میزبانی و پیکربندی نرم‌افزار نیست. در مقابل، تمام تنظیمات نرم‌افزار وب‌نوشت هم برای کاربر در دسترس نخواهد بود.

این نوع وب‌گاه‌ها خدمات مختلفی را ارائه می‌کنند. متداول‌ترین این خدمات، امکان ایجاد وب نوشت نوشتاری است. برخی از این وب‌نوشت‌ها امکان ایجاد وب‌نوشت عکسی (فتوبلاگ)، وب‌نوشت صوتی (پادکست)، و یا وب‌نوشت ویدیوئی (ویدئوبلاگ) را نیز ارائه می‌کنند.




ارائه‌دهندگان خدمات وب‌نوشت فارسی

وبگاه‌های ارایه کنندهٔ خدمات وب‌نوشت به فارسی، ابتدا متمرکز بر خدمات وب‌نوشت متنی بودند اما تدریجاً انواع دیگر خدمات، نظیر میزبانی پادکست و وب‌نوشت‌های تصویری را نیز ارائه کردند.

اولین وب‌نوشت دهندهٔ تماماً فارسی، پرشین‌بلاگ است که در ۲۳ خرداد ۱۳۸۱ کار خود را رسماً آغاز کرد. تا پیش از آن، وب‌نوشت دهنده‌های چند زبانه نظیر بلاگر را می‌شد برای وب‌نوشت‌های فارسی به کار گرفت. در طول سال‌های دههٔ ۸۰ و ۹۰ خورشیدی، برتعداد وب‌نوشت دهنده‌های تماماً فارسی افزوده شد. آمار رسمی از تعداد این وبگاه‌ها موجود نیست اما گمان می‌رود که حدود ۳۵۰ وب‌نوشت دهندهٔ تماماً فارسی مشغول فعالیت‌اند.

از جمله ارائه‌دهندگان خدمات وب‌نوشت به فارسی می‌توان به بلاگ اسکای، بلاگفا، پارسی بلاگ، پرشین‌بلاگ و میهن بلاگ اشاره کرد.



وب‌نوشت عکسی

وب‌نوشت عکسی یا فوتوبلاگ یا فتوبلاگ نوعی وب‌نوشت (وبلاگ) است که هر یادداشت آن را یک عکس تشکیل می‌دهد که معمولاً توسط صاحب وب‌نوشت عکسی گرفته شده و گاه توضیحی کوتاه در مورد عکس به آن ضمیمه شده‌است.

بعضی وب‌نوشت‌های عکسی برای تفنن ساخته شده و بعضی دیگر خبری یا هنری هستند . بسیاری از افراد علاقه دارند از این طریق زندگی روزمره خود را به تصویر بکشند. وب‌نوشت‌های عکسی بیشتر کارهایی فردی هستند و معمولاً به شرکت یا بنگاهی ارتباط ندارند . برخی از وب‌نوشت‌های عکسی توسط یک نفر و برخی توسط چند نفر تهیه می‌شوند. در برخی از آنها روزی یک یا چند عکس قرار داده می‌شود و در برخی گهگاه عکس جدیدی دیده می‌شود. عکس‌ها ممکن است با متن کوتاهی همراه باشند که شرحی از واقع روز یا نحوهٔ گرفتن عکس باشد. بسیاری از وب‌نوشت‌های عکسی مکانی برای قرار دادن یادداشت توسط بازدیدکنندگان دارند، برخی از آنها هم چنین امکانی را ندارد.



ویدئو بلاگ

ویدئو بلاگ (video blog) که گاهی اوقات به صورت کوتاه شده وی بلاگ (vblog) خوانده می‌شود یکی از شاخه‌های وب‌نوشت بوده که در آن از فیلم‌های کوتاه استفاده می‌شود. در این نوع از وب‌نوشت استفاده از تصاویر،متن،زیرنویس و سایر فرادادهها پشتیبانی می شود.ویدئو بلاگ

ویدئو بلاگ‌ها همانند سایر وب‌نوشتها از آراس‌اس ، اتم و ...، برای گسترش ویدئوها بر روی اینترنت ، تجمع خودکار و اجرا بر روی تلفن‌های‌همراه و کامپیوترهای شخصی سود می جویند.





وب جهان‌گستر

جهان وب٬ وب جهان‌گستر٬ تار گیتی‌گستر٬ یا به طور ساده وب (به انگلیسی: World Wide Web) یک سامانهٔ اطلاعاتی از پرونده‌های ابرمتنی متصل‌به‌هم است که از طریق شبکهٔ جهانی اینترنت قابل دسترسی هستند. به‌کمک یک مرورگر وب می‌توان صفحات وب (که شامل متن، تصویر، ویدیو و سایر محتویات چندرسانه‌ای هستند) را مشاهده و به‌کمک ابرپیوندها در میان آن‌ها حرکت‌کرد.

تیم برنرز لی، یک پژوهشگر علوم رایانه و کارمند موسسهٔ سرن در نزدیکی ژنو، در ماه مارچ سال ۱۹۸۹ میلادی پیشنهاد اولیهٔ وب امروزی را مطرح کرد. پیشنهاد ارائه‌شده در ۱۹۸۹ قرار بود که یک سیستم ارتباطی برای موسسه سرن شود، اما برنرز لی به‌زودی متوجه‌شد که این ایده قابلیت جهانی‌شدن را دارد. برنرز لی به همراه رابرت کایلیائو در سال ۱۹۹۰ میلادی این پیشنهاد را به‌عنوان «پیوند و دسترسی به اطلاعات مختلف به‌صورت تارنمایی از گره‌هایی که کاربران به دل‌خواه در میان آن‌ها حرکت می‌کنند» ارائه دادند. برنرز لی در ماه دسامبر همان سال اولین وب‌گاه را به‌وجودآورد و در ۷ اوت سال ۱۹۹۱ میلادی آن‌را به‌عنوان یک پروژه بر روی گروه خبری alt.hypertext منتشر کرد.
ساعت : 7:15 pm | نویسنده : admin | مطلب بعدی
قالب وبلاگ | next page | next page